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INTRODUCTION

In order to obtain a consistent theory of nuclear forces 
by means of intermediary meson fields according to the 

idea of Yukawa1), it has been necessary to introduce a 
considerable number of independent field variables for the 
description of the meson field2). As was shown in a recent 
paper in these Proceedings by L. Rosenfeld and the present 
author*, the meson field variables are to be taken as a 
combination of the field quantities of the “vector” theory 
with those of the “pseudoscalar” theory. These two types 
of field variables are so far completely independent and 
satisfy equations which are separately covariant under 
arbitrary changes of the frame of reference. Each of the 
two types of field equations contains a set of two universal 
constants, pt, p2> and fi> which determine the strength 
of the couplings between the nucleons** and the “vector” 
and “pseudoscalar” meson fields respectively. In order to 
avoid the occurrence of strongly singular terms already in 
the static interaction energy, the absolute value of g'2 must

* C. Møller and L. Rosenfeld, D. Kgl. Danske Vidensk. Selskab, 
Math.-fys. Medd. XVII, 8 (1940), later referred to as M'. R.

** In a recent note on the theory of nuclear forces9), the word nu- 
clon originally proposed by Belinfante, has been used as a common 
notation for the heavy nuclear constituents, neutrons and protons. In 
the meantime, howewer, it has been pointed out to me that, since the 
root of the word nucleus is “nucle”, the notation “nucleon” would from 
a philological point of view be more appropriate for this purpose. 
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4 Nr; 6. C. Møller:

be chosen equal to the absolute value of /*2 but, otherwise, 
the constants are completely independent. Although the 
theory has all the defects inherent in any quantum field 
theory, it was shown that all processes in which distances 
larger than a given critical “universal” distance are of 
importance only, can be treated unambiguously by a “cor­
respondence” method.

Quite apart from the fundamental difficulties of quantum 
field theory, which probably can only be removed by an 
appropriate incorporation of the “universal” length into the 
theory3), the occurrence of two independent types of fields 
and four universal constants in the theory is an unsatis­
factory feature which arouses the suspicion that the form­
alism developed in M.R. is only part of a more compre­
hensive formalism in which the vector and pseudoscalar 
meson fields are more intimately connected and, conse­
quently, the number of independent constants is reduced.

In the first section of the present paper, it is shown that 
the vector and pseudoscalar field equations may be com­
prised in a five-dimensional representation which is in­
variant under all rotations in a five-dimensional space, if 
the constants f'r and f’z are fixed by the equations

fi = gi fz = —gi

These equations are in accordance with the condition 
f'% — g22 mentioned above. Since the Lorentz transform­
ations form a subgroup of the group of rotations in five­
dimensional space, the invariance properties of the field 
equations arc in this way extended to a wider group of 
transformations in which the field variables of the “vector” 
and “pseudoscalar” theories are transformed into each
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other. In the new formulation of the meson theory, we are, 
thus, left with only two independent constants which may 
be fixed empirically, for instance by a comparison of the 
theoretically and experimentally determined energy levels 
of the deuteron.

In section 2 of the present paper, the physical inter­
pretation of the formalism developed in section 1 is dis­
cussed. Since the group of five-dimensional rotations is equi­
valent to the group of space-time rotations and translations 
in de-SiTTER space, it is possible to interpret the equations 
of section 1 as the field equations of the meson theory in de- 
Sitter space. In the approximation where the curvature of 
this space is neglected, all consequences of the theory are the 
same as in the old formulation, apart from the difference 
arising from the fixation of the constants and f'2 which, 
of course, makes the predictions of the new theory more 
precise.

In the last two sections, the equations of motion are writ­
ten in Hamiltonian form, the expression for the static inter­
action potential is derived, and the bearing of the theory 
on the problem of the electric quadrupole moment of the 
deuteron is briefly discussed. It is shown that the value 
of this .quantity, on the present theory, is of the same 
order of magnitude as the value derived from the measure­
ments of Rabi and his collaborators4). An exact determin­
ation of the value and sign of the quadrupole moment 
will, however, require a closer examination*.

* The definite statement on the sign made in a recent note9) was 
premature.
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1. Mathematical formalism of the meson theory.
Before proceeding to the main subject of this section, we 

shall give a brief account of the formalisms of the vector 
and pseudoscalar theories. In either case, the assumption 
of both charged and neutral mesons necessitates the intro­
duction of three independent sets of real wave functions 
Ft, F.£, and F3, where the index 3 refers to the neutral 
field, while the two other sets of quantities, Ft and Fa, 
together describe the charged mesons. The differential equa­
tions of these fields may be compactly written as symbolical 
vector equations if, following the procedure in M.R., cor­
responding components of the three sets of field variables 
are grouped into symbolical vectors denoted by

JF = (F,, Fa, Fs).

If, similarly, the corresponding source densities Sa, 
S3, giving rise to the real fields in question are considered 
as the components of a symbolical vector

S = (S,, S4. S3)

the field equations of the three kinds of fields simply appear 
as different components of symbolical vector equations. We 
shall now write down the field equations of the vector and 
pseudoscalar theory in a form which shows their covariance 
against Lorentz transformations.

Let x4 = ict be the usual imaginary time variable, while 
aq, a?2, x3 are the ordinary Cartesian space coordinates. In 
the vectoi’ meson theory, the field is now described by a 
four-vector Uk and an antisymmetrical tensor Crkl = — 
Similarly, the source densities giving rise to these fields are 
described by a four-vector and an antisymmetrical
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tensor Skl =—Slk, both of which are functions of the 
variables of the nucleons alone. The field equations may 
then be written

(/c.Z) = (1,2,3, 4)
(1)

where k is the constant determining the range of the nuclear 
forces. In the pseudoscalar meson theory, the field and the 
sources are described by pseudoscalars and JR and 
pseudo vectors I\ and l*k, the source densities // and l*k 
being again functions of the variables of the nucleons, and 
the corresponding field equations are

In order to express the source quantities as functions of 
the dynamical variables of the nucleons, it is convenient 
to introduce five quantities (p = 0, 1, 2, 3, 4,) defined by

Y/c = - ißöfc = P2 °k 0=1.2, 3) 

y4 = ß = p3

y0 = = -pi

(2)

where ß and (&k, pk, crfc) (Á = 1, 2, 3) are the ordinary 
Dirac matrices.

The variables yp obviously satisfy the commutation rules

YuYv + YvYu = 2Sav (p,v = 0,1,2,3,4). (3)
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Let be the wave function of the heavy particles, and

= zVß (4)

where y*  is the conjugate complex of y.

* While the constants g, f, and f are the same as those used in 
M. R., the constant g differs from the corresponding quantity in M. R. 
by a factor of — 1, i. e. = f', ft = f'*, g¡ = g'¡f but g, = —g'.

If, furthermore, t = (t1? tä, t3) is the “isotopic spin­
vector” chosen in such a way that the eigenvalues +1 and 
— 1 of t3 refer to the neutron and proton states, respectively, 
the source densities occurring in (1) and (1') are simply 
given by*

(*=1,2,3,4)  I
Ä = fjtTyj 1

Í (6)
A = ^'*' ,T[Y..Y*)'t'

(Å-,/) = (1,2,3, 4)

where [y^, yv] = ypyv — yvyp is the commutator of yu and yv.
The quantities (5) and (6) are real, apart from the four- 

components which are purely imaginary, and this condition 
is not altered by Lorentz transformations.

As emphasized by Klein5), the quantities occurring in 
(5) and (6) are covariant for a wider group of trans­
formations than Lorentz transformations. If we formally 
introduce a new real variable x0, the five quantities (x^) 
p = 0, 1, 2, 3, 4 may be interpreted as coordinates of a 
point in a Euclidian space {i?5} of five dimensions. Con­
sidering now an orthogonal transformation
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in the quantities

= ^y^

muv mvp [y^yd'^
(U.v) = (0,1,2,3,4)

(8)

will transform like the components of a five-vector and of 
an antisymmetrical tensor in ¿7?

For instance, the transformed variables /p will be connected 
with the old variables by the equation

V = o
pv ty

and the transformed wave function Y' will be connected with Y
by the relation

yz = sy

S being a unitary operator which, for an infinitesimal trans-
formation

4
Xp = Xp + £pVXv, 6pV = — Êvp (9)

n- o
is given by

s = i + ¿ Epv typ» y vi- )
P,V = 0

On account of (2) and (3) we have, therefore, S* - ßS—lß, where 
S* is the Hermitian conjugate of S, and thus for the transformed 
variable Y'^ we get

Y'f _ Yf S~l.

This important relation only holds for such transformations 
which preserve the reality of the variables,Xo, æi> æ2> æ3, and the 
imaginary character of x4. The determinant of any transformation 
defined by (9) and (9') is positive.
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It is tempting now to comprise the five quantities (5) in 
one quantity (JFJ^) with five components defined by

(10)

According to (8), (Jf^) will be a five-vector if = 
Similarly, the quantity defined by

Pk
(10')

= (1,2,3,4)Ski

{R¿ if
now

(ID

and

(11')

£
^HV

will be a tensor in
Putting

£* wu

^kl

p = 0,v = À = 1,2,3,4 
p = /c)
v = Z J

the equations (1) and (1') may be compactly written

(p,v) = (0, 1,2,3,4)

(12

if we assume that the field variables in (1) and (1') do not 
depend on the coordinate x0. Here we have made the con­
vention that Greek indices which appear twice, like v in 
the last equation (12), have to be summed over all values 
from 0 to 4.

The field equations are, thus, brought into a form in 
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which their invariance against all rotations in is ap­
parent, provided the field variables and source densities in 
(12) transform like tensors. As mentioned above, the source 
quantities will be tensors if (and only if)

A = 9, f, = 92 (13)

and the field variables Cr^v and may by definition be 
taken to be tensors.

To obtain a real covariance of (12) of the kind men­
tioned above we must, of course, admit that the field 
variables and source densities in general may be functions 
of all “coordinates” (æ^) including x0. We are, thus, led to 
the view that the meson theory developed in Nl.R. represents 
only a special case of a more general theory in which the 
field variables are characterized by five parameters (a-p) 
U = 0, 1, 2, 3, 4, instead of the ordinary four space and 
time coordinates. A physical interpretation of this formal­
ism and especially of the variables will be given in 
the next section, and we shall here let the question open 
whether the values of (a?u) are confined to a finite domain 
6û in or cover the whole five-dimensional space. We 
only remark that the region ûû, if finite, must have a 
form which is invariant under all rotations in {^5}, i. e. 

the boundary of CÛ must consist of concentric “spheres”.
The general field equations are, then, given by (12) with

(14)

To be consistent, we have now also to generalize the 
equations of motion of the nucleons to make them in­
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variant against all rotations in {^5}. This is easily done, 
and we get for the wave equation of these particles

J y — J- ^°C — T y r V 1 I Y = 0 (15)
h he y^4Khc Ly^Yvl JT u uö?

and the adjoint equation

1=0 (15')

the differentiation in the last equation operating backwards 
on the function y. Here, Af0 is an abbreviation for

Mo -= kt!» M°
2 iVIN 2 lvlp

where and Mp are the ordinary rest masses of neutron 
and proton. The equations (15) and (15') are obviously 
covariant under all rotations in {h1} and, if y does not 
depend upon x0, they become identical with the wave 
equations of the heavy particles following from the vector 
and pseudoscalar meson theory.

Multiplying (15) by 4/ on the left, and (15') by y on 
the right, and adding we get

4/^=°. (,6)

Multiplying (15) by on the left and (15') by

on the right and adding gives*

* The symbol A indicates a symbolical vector product, i. e. 
= A.B.-A.H.

1
he (17)
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In this derivation we have used the relations

[Ts-tJ = 2ztä and = — 2zTt 

characteristic for any spin vector. Using the field equations 
(12), we get further

ÏÏc (^A2^^ A^v)3 •

From (16), (17) and (18) it follows at once that the five- 
vector

V = vv)a <>9)

satisfies the divergence relation

(20)

The vector in (16) an(i the vector may be inter­
preted as the particle-current and charge-current density 
vectors in

The equations of motion (12), (15) and (15') may be 
derived from the variational principle

8L = 0 (21)

with the total Lagrangeian

ûû

dx0 doq dx2 dx3 dx 4

(22)
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Here, (jù denotes the region in {/Ty covered by the possible 
(a?u)-values, €r^v is defined by the first equations (12), and 
4>, 4/ and are supposed to be varied independently in 

such a way that the variation of these quantities is zero 
everywhere on the boundary of the region ûû. The cor­
responding Euler equations are then identical with the 
equations of motion (12), (15) and (15'), if the wave func­
tions 4> and 4/ provisorily are treated as c-numbers.

2. Physical interpretation of the formalism.
We shall begin this section with a brief survey of the 

properties of the de-SiTTER world which, as we shall see, is 
of importance for the discussion of the physical inter­
pretation of the formalism developed in section 1. As 
emphasized by Dirac6), the de-SiTTER space (with no local 
gravitational fields) represents the only solution of the 
equations of general relativity which has a non-trivial 
group of operations carrying the space over into itself. The 
group of operations in question is just the group of orthogon­
al transformations in a five-dimensional space considered 
in section 1. This follows at once from the remark made by 
Robertson7) that the de-SiTTER space can be interpreted 
as the surface of a four-dimensional “sphere” (of hyperbolic 
character in one direction) embedded in a live-dimensional 
space {R.}- It may, thus, be described by five coordinates 

X. x. X , xn, X connected by the relation0 1 2 3 4 J

æuæu = (23)

where four of the coordinates are real and one, x say, is 
purely imaginary. The radius of the sphere R is connected 
with Einstein’s cosmological constant Ä by the equation
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R =

Any

and is of the order of magnitude of 1027

rotation in {.R } represented by

cm.

(24)

obviously leaves (23) invariant.
Further, it may be shown* that the group of rotations 

(24) induces a group of transformations in the de-SiTTER 
world which is closely analogous to the group of Lorentz 
transformations (including spatial reflections) and trans­
lations in the Minkowski world of special relativity. An 
arbitrary point P on the sphere (23) corresponds to a 
certain “event” in the de-SiTTER world. In a small four­
dimensional region on the sphere around the point P, we 
may introduce the ordinary space and time coordinates 
x, y, z, t of special relativity. To see the connection between 
these variables and the coordinates in {R.}, we introduce 
that system of coordinates (o^) in which the point P has 
the coordinates (R, 0, 0, 0, 0). For the small region in 
question, we have then simply

(æp) = (R,x, y, z, ict) (25)

neglecting terms of higher order in —- (/c = 1, 2, 3, 4), and 

infinitesimal rotations (24) in {r } will correspond to ordinary 
Lorentz rotations and translations in space and time 
inside the small region.

A vector in the de-SiTTER space will be a quantity 
having five components which by rotations transform 
like the coordinates, i. e.

Ap = agv Ay

* See the appendix and Robertson, loc. cit.7).
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If (A^) represents a vector which has a correspondence 
in classical physics like the electromagnetic potentials or 
the ordinary electric charge-current density, its direction will 
lie in the de-SiTTER space and, thus, we have

= (26)

In the system of coordinates (25) for a small region al 
the point P, this condition reduces to Ao = 0, and the 
four components A1, A2, A3, A4 may be identified with the 
ordinary space-time components of the vector in special 
relativity.

Any physical law in the de-SiTTER space must be invariant 
against all rotations (24) and so be expressible as tensor or 
spinor equations in Since all equations in section 1 
are of that type, they may naturally be regarded as the 
equations of meson theory in the de-SiTTER space*. But here 
we meet with the difficulty that the differentiation processes 
in (12), (15) and (15') are going outside the de-SiTTER sphere 
and a priori the field functions are only defined on this 
sphere which represents the physical space. In his paper 
quoted above0), Dirac avoided the corresponding difficulty 
in the formulation of the electromagnetic theory in de-SiTTER 
space by assuming all field functions to be homogeneous 
functions of of some definite degree. In our case, it seems 
more natural to use the following procedure. We extend the 
definition of physical space to a five-dimensional region (jû 
between two “spheres” represented by the equations

* This is one possible interpretation of the formalism in section 1. 
An alternative interpretation may perhaps be provided by the „projec­
tive“ point of view according to which the variables (xj are regarded 
as homogeneous coordinates of a four-dimensional projective space. (See, 
for instance, W. Pauli, Ann. d. Phys. 18, 306, 1933). Such interpret­
ation would also establish a connection with Kleins unified theory 
of gravitation and electricity. (0. Klein, Zs. f. Phys. 46, 188 (1927).)
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P æp æp

P2 = æM æp
(27)

where d is a small but finite length, and the homogeneity 
condition for the field quantities is replaced by certain 
conditions at the boundary of this space. This procedure is 
natural for two reasons: Io the field vector describing 
the meson field does not satisfy a condition of the type (26) 
but has a finite component in a direction perpendicular to 
the de-SiTTER space, i. e. the direction of increasing p; 
2° although the variable p itself has no classical analogue, 
the canonically conjugate momentum to p is, as we shall 
see, intimately connected with a familiar classical quantity, 
viz. the rest mass of the particles associated with the 
field considered. For decreasing d the space defined by (27) 
goes over into the ordinary de-SiTTER space, but also for 
finite d the theory has a simple physical interpretation.

The boundary conditions for the field quantities are 
obtained by expressing that the total electric charge in the 
world has to be constant. If Px and P2 are two points on 
the same arbitrary five-dimensional radius vector and with 

p = R—and p = P+-, resPectively> we must have 

where is given by (19). Any field quantity like y, 4/, 
or therefore, must satisfy boundary conditions of 

the form
D. Kgl. Danske Vidensk. Selskab, Math.-fys. Medel. XV1I1, 6. 9
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/ 2 2
Y (P) “ j') = Y (P2) (« + (28)

which are invariant against all rotations in
Only such solutions of (12), (15) and (15') which satisfy 

the boundary conditions (28) can have any physical 
meaning. Solutions which do not satisfy (28) would represent 
a state in which the total charge is not conserved.

Let us now consider a certain region around the point 
(7?, 0, 0, 0, 0) with an extension I small compared with R. 
Since 7? 10 cm this region may be very large (practically
infinite) compared with the dimensions in atomic physics. 
In the following, we shall often neglect all terms of the 

order — since they will be of no importance. This procedure 

is effectively the same as going to the limit 77->oo. In this 
limit, the physical space 6û defined by (27) becomes an 
infinite plane parallel region of thickness d. Introducing a 
new coordinate = ,T0—instead of x , this region is 
defined by

-oc<xk<oc, (k = 1,2,3,4) (25') 

where the four variables xk are the usual space and time 
variables of special relativity. A rotation in [R } with con­
stant x then corresponds to an ordinary Lorentz trans­
formation while an infinitesimal rotation in the (æoæA)-plane 
corresponds to a parallel displacement along the .l'^-axis. 
In this approximation, the boundary conditions (28) simply 
become

= (28,) 

where x. stands for the variables x , x , x , x .k 12 3’4
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Integration of (20) over all values of shows, by use of 
(28'), that the four-dimensional divergence of the four-vector

d

(k = 1, 2,3,4)

(29)

vanishes, i. e.

(29')

(29), which is the mean value of sk over all values of <; 
multiplied by e, may thus be interpreted as the charge­
current density vector in ordinary space-time. If the wave 
functions do not depend on (29) becomes identical with 
the charge-current density vector of the theory developed 
in M.R.

Consider a small three-dimensional volume in space-time de­
fined by three infinitesimal four-vectors ak, bk, ck. The charge 
intersecting this volume will then be

«1 M1./1 ci «1^1 Cl Si

^2 c2 J2 -e\ a2 ^2 c2 s2

a3 ^3 c3 7 3 "J a3 ^3 c3 S3

a464 C4J4 V d a4 b4 c4 s4

which is invariant against all Lorentz rotations and translations. 
This quantity can easily be expressed in a way which shows its 
invariance against all rotations in (Z?5) in the case of finite 7?. 
The three vectors a, b and c lying on the de-SiTTER sphere now 
have five components b^, satisfying the equations

Opæu = ¿pæn = 0.

To these vectors corresponds a certain four-dimensional volume 
containing points with a radius vector between p. and p + d p. 
This volume may be represented by a five-vector with com­
ponents of the type6)

2*



20 Nr. 6. C. Møller:

P

and the total charge intersecting the volume (a, b, c) will thus be 
rf

•ro «o ¿o co so

æi ai ci si
æ2 ^2 ^2 ^2 '**2
æ3 a3 ^3 c3 s3
.1'4 CI4 />4 C4 S4

(30’) is obviously invariant against all rotations in {/?5} and be­
comes identical with (30) in the limit of very large R.

Let us now consider the wave equation (15) of the heavy 
particles neglecting the interaction with the meson fields. 
Putting

fid,
PM = ñ— (11=0,1,2,3,4)p i ex..

this equation may be written*

(31)

The five-vector pp will now, in general, not satisfy equations 
of the type (26). Besides the four components in the direction 
of the de-SiTTER space, which may be interpreted as com­
ponents of the ordinary energy-momentum vector, (p ) will 
ordinarily have a component in the direction of the “radius 
vector p. To see the physical meaning of this component,

* In his paper cited above, Dirac has set up a wave equation for 
electrons in de-SiTTER space which in form differs considerably from 
equation (31). In the limit of large I{ and small d the consequences of 
the two equations are, however, practically identical.
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we may for a region small compared with R introduce the 
coordinates Ç and xk defined by (25'). pk (k = 1,2, 3, 4)
will then be the ordinary energy-momentum vector and 

represents the component in the direction p.

Multiplication of (31) by the operator

gives, on account of (3),

{¿-rf+^+«^sj^ = o

which shows that a plane wave of the form

(32)

represents a state in which the particle has the momentum 
p, the energy E, and a rest mass

(33)

Since y in (32) has to satisfy the boundary conditions (28'), 
the variable pQ can have only discrete values given by

Pc = l,hd <34)

n being an integer.
The possible values of the rest mass are, thus,

(33’)
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In the limit of very small d, the distance between the 
possible Åf-values will be so large that practically the lowest 
value A/ is attainable, only.

Similarly, if we consider the field equations of free 
mesons, we get from (12) by cancelling the source quantities

and from these equations

The solutions of this equation, 
conditions (28'), are of the form

satisfying the boundary

where E,p and o are constants connected by the equation

(35)

and n again is given by (34).
The equation (35) represents the energy-momentum 

relation for a particle with rest mass
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Thus, the mesons may exist with different rest masses 
given by

M-=<i/i+nsty2 (36)

where the minimum value M° = -- is the mass of the
Z?1 c

meson in Yukawa’s theory. While the variable Ç itself has 
no classical analogue it is seen that the corresponding 
“momentum” p(. is closely connected with the rest mass. 
It would, therefore, seem more natural to introduce the 
variable p instead of or xq into the field equations. For 
instance, if we expand the wave function (p of the heavy 
particles into a Fourier series

Tto.S = 2"+'/.. (37)
Po

where the summation is extended over all values (34) of 
po, the boundary conditions (28') will be satisfied for arbi­
trary functions (xA.) of the four variables , x%, x^, x. 
Neglecting again the interaction with the meson fields, the 
differential equation for ^as ^e f°rm

= « (38)

which, by a simple canonical transformation, may be 
brought into the form of an ordinary Dirac equation with 
a rest mass given by (33). If the meson field quantities are 
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also written as Fourier series of the type (37) with Fourier 
coefficients 6?^ and we get for the charge- and current­
density (29)

(39)

showing that the total charge- and current density is the 
sum of the corresponding quantities for particles with 
different values of the rest mass. Each of the terms in this 
sum has the same form as the charge- and current densities 
of the theory in M.R. The “Fourier coefficients” 
etc. may, thus, be interpreted as wave functions of the 
particles with rest masses (33) and (36). Since, however, 
the use of the variable instead of Ç or spoils some 
of the symmetry in the field equations we shall, in the 
following, use the original form of these equations given in 
section 1.

3. Hamiltonian form and quantization of the 
equations of motion.

Following the general method developed by Belinfante 
and Rosenfeld8), it is easy to construct the “energy­
momentum” tensor and the Hamiltonian corresponding to 
the Lagrangeian (22) of a system of heavy particles and 
meson fields.

Putting now

i 6?r4 = Fr, i Sr4 = Tr (r = 0, 1, 2, 3) 
U4 = iV,M4 = itf

the equations (12) may be written*

*) The notation A represents the time derivative of A divided by 
the velocity of light.

(40)
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(41)

(42)
G rs

where indices like r, s ... are running from 0 to 3.
We shall, in the following, use a representation of the 

nuclear particles in configuration space, the z’th particle 
being then described by the variables

(0 / (i) (i) ^(i) ->(<) (i)\
q = \T , p , ct , æ , ç /.

Since the variable = 7? + ^ will not occur any more 
we shall for the sake of greater symmetry in the formulae 
often write x0 instead of In the approximation, where R 
is treated as very large compared with the dimensions of 
atomic physics, the variables x^ = are confined to the 

intervals

while the quantities , x\ ) = x'may have practic­

ally all values from — oo to + oc.
If we simply extend the ordinary quantization rules to 

this configuration space, we get

(r, s) = (0, 1, 2, 3)
(43)
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where (r = 1, 2, 3) are the components of the ordinary 
momentum operator of the z’th particle and p^ is the 
operator connected with the rest mass of the particle. 
Similarly, the meson field variables Fr and Ur (r — 0, 1, 2, 3) 
are canonically conjugate variables satisfying the commu­
tation rules

F»n,r(æ’O. F,t.s(æ', 0.] = ^crf5iHM5rs8(a-0-æ0')5(æ-æ) (44) 

all other pairs of variables commuting.
Using (43) and (44), the field equations (41) as well as 

the equations of motion of the heavy particles may be 
derived from the usual relation

À =

with the Hamiltonian

and the indices r and s are running from 0 to 3. In (45), 
and 6rrs are to be regarded as functions of the dynamical 

variables defined by the equations (42) and the four 
variables ar = zßyr are given by
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( Pa <• = 0 

lp,®r r = >>2' 3- (46)

Due to the boundary conditions (28'), which hold for 
all field variables, partial integrations may be performed 
freely in any integral expression without taking care of the 
contributions from the boundary.

The second integral in the Hamiltonian is an invariant 
which could have been omitted without disturbing the 
invariance of the scheme. Also from the point of view of 
the derivation of the meson field equations (41) this term 
remains arbitrary. As will be seen later, the inclusion of 
this term is, however, necessary in order to avoid the appear­
ance of singular terms in the static interaction of the type 
of a 8-function.

In terms of the variables in configuration space the 
source densities (14) are

^ = stdZT<')iß<',y<w',8(x-x('))
i

= 2KdT"VW YÏ’]S (x-xw) (47) 

with 8 (x — x >) = 8 (x0 — Xq >) 8 (x — x .

Eight of these fifteen quantities contain a factor of the 
same order of magnitude as the ratio between the velocities 
of the nuclear particles and the velocity of light while the 
seven other quantities remain finite in the “non-relativistic” 
approximation. The last mentioned quantities are

(48)
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The expression for the Hamiltonian (45) shows that the 
energy of free mesons is always positive. The new formalism 
thus constitutes a consistent scheme satisfying all theoretical 
requirements.

4. Derivation of the static interaction potential. Electric 
quadrupole moment of the deuteron.

By the method developed in M.R. it is easy to derive the 
expressions for the “static” interaction between the nuclear 
particles. For this purpose, let us consider the equations 
determining the “static” parts of the meson fields, i. e.

obtained from (41) and (42) by cancelling the time-deri- 
vatives 'LL, JF and the source densities IL and JA which 
are proportional to the velocities of the heavy particles.

From (49) we get

d2 F°
<Trrd.rr K2 F° = - AT. (51)

Using the relation

dxt = 0, (52)
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(53)

written

(54)

of p and

Po
(55)

the dif-

(56)

r and s running from 0 to 3.
We shall now find a solution

which follows from the first equation (50), we get further 
from (50)

we get by introduction of (54) and (55) into (51) 
ferential equations

Vo of (51) satisfying the 
boundary conditions (28'). Such a. solution may be 
as a Fourier series

d^rs

where the sum is extended over all values (34) 
is a function of x = (x^, x^, xr¿), only.

Expanding 2V in a similar way

ó2 17°
---- K2Ur°dxsdxs

for the functions V2 \x).Po
Equation (56) is of the same type as equation (11) in

M.R. Thus, we have the solution
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r = I .r — x

analogous to the equation (14) in M.R.
Hence, with the help of (55), the function I70 (x) in 

(54) may be written

T70 (x) — Ç ïV(x') <h (x — x') d 00' (58)

(59)

(60)

The fact that (58) is the solution of (51) may be expressed 
by the equation

d“<t>(x — x) „
——x-------------K2 O (x — x) — — d 8 (x — x)dxrdxr

where
8(x— x') — 8(x0— x'0)s(x— x').

(61)
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Similarly, we get a solution of (53) of the form

1
V° = ~ d d <62)

an expression which by partial integration is seen to satisfy 
the condition (52).

We now separate the field variables into a static and a 
non-static part by the equations*

* As in M. R. it is easy to find a canonical transformation effecting 
a separation of the type (63). The corresponding unitary operator o*? 
is simply

-L \ (F° r — u° F)(i(A
hed j v r r ' ''of = e

jf; = f; + rlr, v, = u; + u¡. (63)

If we introduce these expressions into the Hamiltonian 
(45) the first integral in separates exactly into a “static” 
and a non-static part, all cross terms vanishing on account 
of (49) and (50). For the “static part” of the two first 
integrals in (45) we get

By partial integrations and with the help of (49), (50), 
(58) and (62) this expression may be written
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1
2d |’’“v+|«;ssrsj

2V(x) 2V(x) O (x — x) + - (Srs (x) Srt (x)

+ f^rt (æ) &rS M) a ] (i^ \ ^rs ,l
rl rs ’ dxsdxt I 8 d ) rs

We have now to introduce the expressions (48) for 2V 
and Srs. Since we are at the moment interested in the 
static interaction potential only we may everywhere put 
p3 — 1, p3 — 1 being of second order in the velocities of

—>■

the heavy particles. In this approximation S is equal to 

jP and

’(S„(«)Srt(^ + SM(®)S„(«')) = ?(x)?(x’)Sä,. (65)

Using (65) and (61), we thus get from (64)

Öl’

~ J{7V(x)2V(x) + K2?(x) JP(x')}0) dû) dCÛ'

This expression for the static nuclear potential differs 
from the corresponding expression in M.R. only by the 
function (x(l)—x(k)) which here replaces the function
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€ tç = ------T^j in the earlier paper. In the limit of very small
4 it r

d, however, the quantity k' in (60) and (59) becomes very 
large and for any finite value of r we may neglect all terms 
in the expression (59) except the first. In this approximation, 
the functions O and <p are equal and the expression (66) 
for the static potential is identical with the expression derived 
in M.R. and does not depend on the variables x^.

The quantities connected with the rest masses of the 
nuclear particles will then (approximately) be constants of 
the motion and (in the lowest states) have the value zero.

In the limit of very small d we, thus, get the same results 
regarding the stationary states of nuclei as in M.R. The 
same holds for any effect derivable from the theory, the 
only difference between the two formulations of the meson 
theory being contained in the relations (13) which reduce the 
number of undetermined constants from four to two and in 
this way make the predictions of the new theory more precise. 
This fact is of importance for the calculation of the quadrupole 
moment of the deuteron in the ground state. As shown in
M.R., the quadrupole moment of the deuteron is due to the 
occurrence of given non-static directional terms in the 
expression for the Hamiltonian. If these terms are treated 
as a small perturbation the perturbed eigenfunction of the 
ground state will be a superposition of S- and D-states, the 
coefficients of the 79-states being proportional to the matrix 
element of the perturbation energy corresponding to a 
transition from the unperturbed S-state to the D-states. The 
charge-density corresponding to the perturbed eigenfunction 
of the ground state will then contain cross-terms between 
the S- and D-states giving rise to a quadrupole moment 
proportional to the matrix element in question.

D. Kgl. Danske Vidensk. Selskab, Math.-fys. Medd. XVIII, 6. 3
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The expression for the non-static interaction energy 2/’ 
of first order in the velocities is obtained by introducing the 
static fields into the third integral in the Hamiltonian (45). 
Thus we get, with the help of (49), (58), (62), and by partial 
integrations

(67)

the indices r and s running from 0 to 3.
In the limit of very small d, where O is equal to (p and

— is zero, we get by introduction of the expressions (40) 

and (47) for the source densities

This expression is identical with the formula (85) in 
M.R. if the undetermined constants occurring there are 
chosen in accordance with the relations (13) and the foot­
note on page 8.

Now, it was shown in part III of the earlier paper that 
the matrix element of the operator (85) in M. R. cor-

3 3responding to a transition from a S-state to a D-statc is 
proportional to f f ■—g% to the first order in the velo­
cities. Since the value of the constant and the signs of 
all the constants could be chosen arbitrarily in the previous 
theory the value for the quadrupole moment arising from
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these terms could be brought into accordance with the 
empirical result both as regards the sign and magnitude of 
this quantity. On account of the relations (13), which 
represent an essential feature of the present theory, it now 
follows that the matrix element of the operator (68) for any 
3 3S —> D transition is zero to the first order in the velocities 
and, thus, does not give rise to any quadrupole moment 
of the deuteron in this approximation.

According to the prescription formulated in M.R. (p. 45) 
we have, therefore, to go one step further in the approx­
imation treatment, i. e. we have in the Hamiltonian (86) in 
M.R. to retain the terms — ¿/T' and which depend linearly 
on the meson field variables. While the operator is of 

the second order in the parameters ß and y iß = -—,
GI c Kr

v = velocity of the nucleons, y = ----------- , G cv> q2, q2,' 4-TTfic Kr y2’
or ff.g'g). these terms will give rise to operators of inter­
action between the nucleons which are of the third order 

in the parameters -, ß and y, and some of these oper- 

ators will have non-vanishing matrix elements for S —-D
© 

transitions. Besides the field-dependent interactions — dTf 
and we have also to retain certain direct interactions 
of the order ß~y, which have been omitted in the express­
ion for the Hamiltonian (86) in M.R. The most import­
ant term of this kind is that which was neglected in (64) 
by putting P3 = 1. In the limit of very small d, this term 
becomes simply

= I (T<‘>T<S’) ÍP»0 p®- 6 (5( W°) 
i,k (69)

(3(k)grad<‘>)9 (/“>).
3*
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The result of a calculation of the quadrupole moment 
due to the mentioned -terms in the Hamiltonian can, of 
course, only be considered reliable if all integrals in this 
calculation are convergent or, at least, if the result does 
not depend essentially on the exact value of the “cutting- 
off” radius. In order to show that this condition is satis­
fied and that we may expect a quadrupole moment of the 
deuteron of the right order of magnitude we shall now 
briefly estimate* the contribution to this quantity arising 
from the typical term given by (69). If the two particles 
of the deuteron are distinguished by the letters N and P 
and relative coordinates x — xN— xP are introduced, the 

operator (69) may be written

(tNtP) (p* pf — !) (** 8rad) (^PSrad) 9 (r) (70>

where the undefined contributions which correspond to the 
self-energies have been omitted. Using the representations 
(110), (111), and (112) in M.R. for the wave functions we get 
for the matrix element of (70), corresponding to a transition 
from the (unperturbed) ground state, “0” (Z = 0, energy Uo)

3
to a D-state with I = 2 and energy E

(E j = 21 ^„ | o) = - J (?> ?o) (5^) /»>

where = — and z(0) and z(2) are given by (113) and (114) 

in M.R. The introduction of these expressions and integrat­
ions over the angles gives

* I am greatly indebted to Mr. I. Nørlund for valuable assistance in 
these calculations. A complete treatment of the problem is being per­
formed by Dr. L. Hulthén.
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where M is the mass of the nuclear particles and RQ and 
are the radial wave functions for the unperturbed 

ground state and a D-state with energy E, respectively. For 
7?o we may use the approximate expression (109) in M.R., i. e.

with (72)

From (72) it follows that

and by partial integration (71) may be written

_ o2 ÍM°V i
•1 = 2 I 0) = 2 V2 ? k2 • (E. / = 2 I W I 0)

i. e.

h

d3 <p 1 d2 cp d2 <p / d 
dr3 r "dr2 + hr2 \dr

J) dr

aK d2<p fox , d3 cp
2 dr2 “dr3.

4tt aK d2 cp /aK 1\
K3 2 _~dr2\2+r) dr3 (73)

Now by (125) and (126) in M.R. the corresponding 
quadrupole moment Q is given by the formula
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2 |/2 C (O I r^\E, l = 2)(E,l= 2\£fn\ 0)
5 ) ’ ’ Eo — E ( ■

_ 8 g2 C (Ok2 J = 2) (Æ, Z = 2 I æ I 0)
5 Itt/jcV Mo) K2 ) |E0| + E

On account of the completeness of the eigenfunctions 
R\ ' we get a fair estimation of the order of magnitude of 
Q by writing

Q =
1 (75)

where Em is the value of E corresponding to the maxi­
mum of the numerator of the integrant in (74) and

(0|r2Q)|0) = (a + 1)« æ3 _p _p ^2 _j_ g^ æ g

* o

 3 a4 3 a3 + 12 a2 4-18 a + 10
4 (a+1)4

dx

by help of (72), (73), and (60).
According to (108) and (109) in M.R. we have

g2 M° c i
-—= 0,065, a = 2,13, and k = ™ ~ 10t3cm~14-TT/ÎC Zj 2

for 3/° = — M„. The value of Em may be estimated m 1 () 0 m d
by taking for 7?(£) the Bessel function \ krJsl (kr) (with

1 ------ \ 2 ” \
k = — yM^Ej. In this way, it was found that the maximum 

of the numerator in (74) lies at about

Eni oo 0,025 Af0 c2.

Since, further, E — 0,0023 Af c2 we get for Q the ap­
proximate value



On the Theory of Mesons. 39

Q oo—3 • IO-27cm2. (77)

Thus, the contribution of the operator to the qua­
drupole moment of the deuteron is of the same order of 
magnitude as the empirical value8) 2,73 • 10~27 cm2, but of 

opposite sign. All integrals involved in these calculations 
are convergent, which is due to the circumstance that the 
matrix elements corresponding to 5 — D transitions, only, 
enter into the expression for the quadrupole moment. Al­
though the corresponding corrections to the energy values 
will depend essentially on the “cutting-off” radius it seems, 
thus, that the calculation of the quadrupole moment ori­
ginating from the interactions of third order in the para­

meters -, ß and y will lead to art unambiguous result.

In the preceding discussion, we have only considered the 
limit of very small d in which the space defined by (27) 
becomes practically identical with the de-SiTTER space. The 
theory is, however, as we have seen, capable of a simple 
physical interpretation for any value of d, and for all pro­
cesses depending essentially only on distances larger than 
the universal distance rQ (see formula (97) in M.R.) the 
quantity d may be chosen as large as 2irro without chang­
ing the probability for such processes. For a finite value 
of d the theory implies the existence of particles with 
different values of the rest mass which perhaps opens the 
jiossibility for a unified theory of all known elementary 
particles with the same spin. In this connection, it should 
be noticed that the form of the theory is not uniquely 
determined by the form of the nuclear forces in distances 
of the order of magnitude k~ . In fact, we could in the 
equations of motion (12) and the Lagrangeian (22) replace 
the source densities and Spv by certain mean values 
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jZ and Spv over the variable p without spoiling the in­
variance of the scheme under rotations in (R '.

For instance, we may put

d p and Spv = \ Spv d p
Pi Pi

where and 7jq are two points on the same five-dimensional 
2 d d

radius vector with p equal lo R—- and 7?+~, respect­

ively. As regards phenomena which take place in distances 
dlarger than — the theorv in this form will give the same 2 TT

results as in the form chosen in the present paper, but the 
probability for a transition between two slates correspond­
ing to different values for the rest mass will be zero, at least 
in the approximation where R is treated as large compared 
with the dimensions of nuclear physics.

Finally, it should be remarked that the theory developed 
in this paper of course contains all divergence difficulties 
inherent in any field theory since we have used the ordinary 
method of quantization of fields. Consequently, the ex­
pression (66) for the static potential, for instance, contains 
infinite terms corresponding to i — k which have to be 
discarded.

Appendix.
By introducing suitable space and time coordinates 

(.r, y, z, 0 the line element of the de-SiTTER world takes 
the simple form of

2 ct

ds2 — e R (cte2 + dy2 + dz2) — c2 di2 (78)

where R is a constant. The variable I may be interpreted 
as the proper time of any observer with “coordinate velo- 
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city” zero, i. e. an observer at a point (,r, y, z) = constant. 
Such observers, who by Robertson7) are called equi­
valent, are in many respects in a similar situation as the 
observers of a system of inertia in special relativity. The 
geometry of space is Euclidian and the velocity of light is 
independent of its direction. The mutual distance of two 
equivalent observers is, however, not constant in time, the 
distance measured at time t with a rigid scale of two 
such observers at the points (aq, yr, zt) and (.r2, y2, z2) being

Ct

I = reR with
r = V'(^i — aq)2 + (?/i ~ ?/a)2 + (^ — ¿a)2 •

The relative measured velocity is, thus, 
proportional to the distance I.

dl 
dt

If we introduce five variables (av) by the equations

ci ct ct

xq — xeR, x2 = yeR, x3 — zeR 

x0 = fí(cosh^~-^eRj

Í ct r* -\x4 = /fi^inh- + ^e«j

r — \/X2 + y2 + z2

(78) may be written
ds2 = ¿ dx2.

n = o

Further, we have from (79)

u

(79)

(80)

which shows that the variables (x^) may be interpreted as 
the Cartesian coordinates of a point on a four-dimensional
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sphere embedded in a Euclidian five-space. The equations
(79) may easily be solved with respect to the variables (,r, 
y, z, t). From the last two equations (79) we get

ct

x0 — ixi = ReH .

Putting for simplicity

.Vi = X, y2 = y, y.} = z

the inverse relations may then be written

R x0 — ix4
c R

Now, Robertson remarked that a rotation in 
fined by (24) generates a transformation of the (yr, ^-vari­
ables which leaves the expression for the line element (78) 
entirely unchanged, if the transformed variables (y/, t') are 
defined by the transformed coordinates (a^) by the same 
relations (79) and (82) as the original variables. The 
transformation (yr, i)-*(y^, /'), thus, connects the space-time 
coordinates of two sets of equivalent observers in analogy 
to the Lorentz transformations in the Minkowski world.

A strict accomplishment of Robertson’s idea requires, 
however, a slight modification in the relations (79), (81), 
and (82). Since t is real we have, according to (81), 
x(} — ix¡ > 0 , which shows that the points (ar^) on the sphere
(80) representing the events in the de-SiTTER world only 
cover that hemisphere which lies on the “positive” side of 
the plane

x{)~ix4 = 0. (83)

This plane is, however, not invariant under all rotations 
in {R;,} ■ The transformed quantity — ix\ may, there­
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fore, occasionally be negative, which by (82) would make 
the corresponding t' complex.

Thus, we have to set up a correspondence between the 
events (yr, /) and the points on the “negative” hemisphere, 
too. This may be done by letting two points (x„) and (—a’u) 
on the same diameter of the sphere correspond to the 
same event (yr, f). While the equations (79), (81), and (82) 
are still valid for points on the positive hemisphere, we 
get then for all points on the sphere (80) the following 
relations

instead of (82).
The general orthogonal transfoi mation (24) with posi­

tive determinant can be compounded from special rotations 
of the following types:

I- xr = xr, (r = 1,2,3)

æo ^xa (æo ixi) (85)

æo + ix4 = (æO + ixj

where À is an arbitrary real number.
This transformation leaves the expression ' x^ and

U
the equation (83) invariant and has a determinant A5 = + 1. 
By (84) we get for the corresponding transformation in 
the de-SiTTER world

J/r = y ’ (r-= 1,2, 3)

f = /+-Zn|Ä|
(86)
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i. e. a change of time origin with a corresponding change 
of scale in space. For À = —1 (84) reduces to

yr = — yr, ('• = 1,2,3)
r = t

(87)

which represents a spatial reflexion at the origin.

where ar and ars are real numbers satisfying the relations
3 3
2artast = Eatrats = brs 

t = 1 1-1

^3 = I «rs I = + 1 •

This transformation leaves the expressions x^ and 
u

.r0 — z.r4 invariant, it has a determinant A5 = + 1 and 
generates, according to (84), a spatial rotation and trans­
lation in the de-SiTTER space

III.

y'r = ÿ ars ys+ar, (r = 1,2,3)
s = 1

f = /.

a*o = æO’ æ2 = æ2’ æ3 X‘i 
x\ = eos 0 + æ4 sin O 
x'4 — — x\ sin 0 + .r4 eos O

tg© = i- or with 0 — ze

* i vtghE = c.

(89)

(90)
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(90) leads, by (84), to the transformation
2 _ 2ct

2 ^coth e —1 — ^2 + e R 
, e R Kx = R coth ------------------------------------—

coth^-a^cothi + ^-e
2 ct
R

(91)

which gives the relation between the space and time vari­
ables of two freely moving systems of equivalent observers 
analogous to that afforded by a special Lorentz transform­
ation. The transversely measured distances are the same for 
both systems and the motion of the origin x' = y' = z' = 0 
of one system with respect to the other system is that 
of a freely moving particle which for t — 0 has a co­
ordinate velocity V in the direction of the x-axis. (Ro­
bertson, loc. cit.7)). For events with large negative values 
of t, the second equation (91) shows clearly the necessity 
of replacing the equations (82) used by Robertson by 
the equations (84).

In a small region on the de-SiTTER sphere around the 
point (R, 0, 0, 0, 0) the equations (79) reduce to the 
equations (25) if we neglect all terms of higher order in 
x u z ct , , „
R’ R’ R’ R than the firSt

I wish most heartily to thank Professor N. Bohr for his 
constant interest in this work and for many helpful discuss­
ions on the subject of the present paper. I also wish to 
thank Dr. L. Hulthén for valuable discussions on the pro­
blem of the quadrupole moment of the deuteron.
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